

Department of Business Administration and Economics

Research Seminar

Bucharest University of Economic Studies, Bucharest, Romania, March 1, 2016

Public finances and economic growth

Bettina Bökemeier

(Birth name: Fincke)

Department of Business Administration and Economics
Bielefeld University
33501 Bielefeld, Germany

Outline

Talk based on:

Part I (EMU+ US):

Fincke & Greiner (2015) On the relation between public debt and economic growth: an empirical investigation, *Economics and Business Letters*, Vol 4, No 4 (2015): Special Issue Debt and Sustainability

Part II (EM):

Fincke & Greiner (2015) Public Debt and Economic Growth in Emerging Market Economies, *South African Journal of Economics*, Vol. 83(3), pp. 357-370

Part III (CEECs):

Bökemeier (2015) Economic Growth and the Public Deficit in EU Member States in Central and Eastern Europe, *Romanian Journal of Fiscal Policy*, Vol.6, Issue 1(10)

Outline

- 1. Introduction
- 2. Estimations for EMU + US (EBL-Paper)
- 3. Extention to Emerging Markets (SAJE-Paper)
- 4. Adaption to CEECs (RJFP-Paper)
- 5. Conclusion

Topicality:

- ▶ financial crisis
- ► public debt crisis Europe
- economic stabilization increased debt ratios
- ► European Integration

Literature contributions I.

Egert (2012)

Public finances and economic growth: public debt

inverted u-shape/ threshold:
 Reinhart and Rogroff (2010)
 Caner et al. (2010)
 Checherita and Rother (2010)

Literature contributions II.

negative correlation:

Ferreira (2009)

Kumar and Woo (2010)

Ballasone et al. (2011)

RQ: How does public debt affect economic growth?

today's proceeding:

- ► panel estimation
- selected EU economies + USA
- ► check for possible non-linearities

2.1 Data

▶ Countries:

Austria, France, Germany, Italy, the Netherlands, Portugal and the USA

- ► Annnual data for 1970 2012
- ► Growth:

```
sub-periods: non-overlapping intervals, (five years q=5, three years q=3 and one year q=1), for q=5: (1970-1975), (1976-1981), ..., (2006-2011)
```

2.1 Data

2.2 Methodology

Regression model (as in Kumar and Woo (2010)):

$$y_{i,t} - y_{i,t-q} = \phi_0 + \psi b_{i,t-q} + \sum_j \phi_j C_{j,i,t-q} + \epsilon_{i,t}$$
 (1)

y: In of real GDP per capita

b: public debt to GDP ratio

C: vector of the additional variables

 $y_{i,t-q}$: initial real GDP per capita, $Trade_{i,t-q}$: foreign trade $GCons_{i,t-q}$: government consumption, $Infl_{i,t-q}$: inflation

2. Empirics2.3 Results I

		pooled model	
	$q = 5 \ (N = 49)$	$q = 3 \ (N = 77)$	$q = 1 \ (N = 294)$
Constant	0.139***	0.100***	0.029***
b_{t-q}	- 0.089 **	- 0.076***	- 0.018***
$R^2(adj)$	0.16	0.16	0.04
DW	1.72	2.26	1.62
		fixed effects model	
	q = 5	q = 3	q = 1
b_{t-q}	- 0.132 **	- 0.104***	- 0.025***
$R^2(adj)$	0.16	0.17	0.04
DW	1.96	2.40	1.65
F test	F=0.68, p-val.=0.67	F=0.66, p-val.=0.69	F=0.75, p-val.=0.61
		random effects model	
	q = 5	q = 3	q = 1
Constant	0.149***	0.107***	0.031***
b_{t-q}	- 0.105 **	- 0.087***	- 0.020***
$R^{2}(adj)$	0.16	0.17	0.04
DW	1.80	2.31	1.63
Hausman test	$\chi^2 = 1.03 \text{ p-val.} = 0.31$	$\chi^2 = 1.49 \text{ p-val.} = 0.22$	$\chi^2 = 1.46$ p-val.=0.23
***(0.1% level)	**(1% level)	*(5% level)	•(10% level)

Table 1: Plain panel estimation results.

2.3 Results I

Figure : Pool, q = 5. Figure : Pool, q = 3. Figure : Pool, q = 1.

2.4 Non-linearities

For studying potential non-linearites:

approximation of the (overall) plain link:

$$y_t - y_{t-q} = s(b_{t-q}) + \epsilon_t \tag{2}$$

	$q = 5 \ (N = 49)$	$q = 3 \ (N = 77)$	$q = 1 \ (N = 294)$
edf	4.12*	1***	1***
R ² (adj)	0.21	0.15	0.04
DW	1.88	2.26	1.62
***(0.1% level)	**(1% level)	*(5% level)	• (10% level)

Table: Spline estimation results, plain model.

2.4 Non-linearities

Figure : Spline, q = 5. Figure : Spline, q = 3. Figure : Spline, q = 1.

+ OLS with higher-order terms (insignificant)

2.5 Results II

	$q = 5 \ (N = 49)$	$q = 3 \ (N = 77)$	$q = 1 \ (N = 294)$
Constant	0.853 **	0.921***	0.313***
b_{t-q}	- 0.051	- 0.050 *	- 0.012 *
y_{t-q}	- 0.067 *	- 0.072***	- 0.025***
Trade_{t-q}	0.193 •	0.223***	0.086***
$GCons_{t-q}$	- 0.390	- 0.560 **	- 0.188***
Infl_{t-q}	0.029	- 0.194	- 0.093 **
$R^2(adj)$	0.27	0.39	0.15
DW	1.78	2.02	1.73
***(0.1% level)	**(1% level)	*(5% level)	•(10% level)

Table: Panel estimation results, pooled OLS.

2.5 Results II

	$q = 5 \ (N = 49)$	$q = 3 \ (N = 77)$	$q = 1 \ (N = 294)$
Constant	1.388***	0.957***	0.324***
b_{t-q}	0.018	- 0.049 *	- 0.011 *
y_{t-q}	- 0.125***	- 0.075***	- 0.026***
Trade_{t-q}	0.159	0.225***	0.087***
$GCons_{t-q}$	- 0.399	- 0.582 **	- 0.196***
Infl_{t-q}	0.022	- 0.206	- 0.098 **
$R^2(adj)$	0.36	0.41	0.17
DW	1.75	2.03	1.74
***(0.1% level)	**(1% level)	*(5% level)	•(10% level)

Table: Panel estimation results, random effects.

- 3. Extention
- 3.1 Introduction

Extention:

Emerging Market economies

Extention

3.1 Introduction

Emerging markets topicality II:

- tight economic inter-relations and integration: influenced other countries worldwide amongst them many emerging market economies (EM)
- ► EM find themselves in times of trouble recently
- ► China's growth performance declines
- severe drop of currencies starting in 2013 continued in 2014:
 Brazil's Real, Thailand's Baht, Turkish Lira, South African Rand

Extention

3.1 Introduction

Research question extended:

How does public debt affect growth in EM?

similar RQ but with focus on

- ► debt and growth relationship
- emerging market economies

Department of Business Administration and Economics

Extention

3.2 Specifics of emerging markets

demarcation of emerging markets

► many ways to classify EM

HOWEVER: no clear cut definition!

► for our approach:

essential property: outstanding growth performance

3.2 Specifics of emerging markets

choice of countries:

study includes eight EM:
 Brazil, India, Indonesia, Malaysia, Mexico, South Africa,
 Thailand, Turkey

not considered:

Russia and China (part of 'BRICS' states) due to data availability

3.3 Data

data set:

- ► Annual data for 1980 2012
- ► Growth: sub-periods of non-overlapping intervals, (five years q = 5 and three years q = 3), for q = 5: (1980-1985), ..., (2004-2009), (2010-2012) for q = 3: (1980-1983), ..., (2008-2011)
- ► Sources: IMF, World Bank, OECD and Abbas et al. (2010) (Debt)

3.2 Specifics of emerging markets

impression of growth performance and debt ratio:

3.4 Methodology

Regression model (as in Kumar and Woo (2010)):

$$y_{i,t} - y_{i,t-q} = \phi_0 + \psi b_{i,t-q} + \sum_j \phi_j Z_{j,i,t-q} + \epsilon_{i,t}$$
 (3)

y: In of real GDP per capita

b: public debt to GDP ratio

Z: vector of the additional variables

 $y_{i,t-q}$: initial real GDP per capita, $Trade_{i,t-q}$: foreign trade

 $Inv_{i,t-q}$: investment, $Infl_{i,t-q}$: inflation,

 $Exch_{i,t-q}$: exchange rate, $Pop_{i,t-q}$: population

Extention

3.5 Results I

5 years growth:

	fixed effects	${\bf random\ effects}$
Constant		- 0.2341
b_{t-5}	0.0028**	0.0028**
Pop_{t-5}	0.4663**	- 0.0141
y_{t-5}	- 0.3150**	0.0140
Inv_{t-5}	0.0078*	0.0060
$Infl_{t-5}$	0.0001	0.0002
$Trade_{t-5}$	- 0.0003	- 0.0032
$Exch_{t-5}$	- 1.48 · 10 ⁻⁵	$-8.56 \cdot 10^{-6}$
$R^2(adj)$	0.40	0.25
DW	2.50	1.78
	Hausman	Test
	$\chi^2 = 22.07$	p-val.=0.0025
	Significance	levels
**(1% level)	*(5% level)	•(10% level)

Table 1: Estimation results, q = 5, eight countries (N=48).

Extention

3.5 Results II

3 years growth:

	fixed effects	random effects
Constant		0.2150
b_{t-3}	0.0015	0.0015
Pop_{t-3}	0.4589**	0.3161**
y_{t-3}	- 0.2550**	- 0.1557*
Inv_{t-3}	0.0016	- 0.0009
$Infl_{t-3}$	- $1.91 \cdot 10^{-5}$	$2.20\cdot 10^{-5}$
$Trade_{t-3}$	0.0010	- 0.0011
$Exch_{t-3}$	$-1.77 \cdot 10^{-6}$	$-2.17 \cdot 10^{-6}$
$R^2(adj)$	0.21	0.20
DW	2.66	2.58
	Hausman	Test
	$\chi^2=3.05$	p-val.=0.8802
	Significance	levels
**(1% level)	*(5% level)	•(10% level)

Table 1: Estimation results, q = 3, eight countries (N=64).

3.5 Results III

Reasoning of positive correlation in EM:

Have EM not reached tipping point of inverted u-shape relationship?

Brazil	Indonesia	India	Mexico	Malaysia	Thailand	Turkey	South Africa
61.0	41.7	64.9	47.4	57.2	39.1	41.7	35.0

Average debt ratios in emerging market economies (1980-2012) in %.

France	France Germany		US
59.4	55.4	111.0	65.7

Average debt ratios in selected other economies (1980-2012) in %.

- 4. Adaption to CEECs
- 4.1 Introduction

Adaption:

Central and Eastern European Countries

4.1 Introduction

Central and Eastern European Countries:

- ▶ transition economies: high growth performances $(\overline{y}=4\%)$
- ▶ 2004 accession: 8 CEECs joined
- ▶ however, also find themselves in times of trouble recently

4.1 Introduction

Literature contributions on debt and growth in CEECs:

- ► Čeh Časni et al (2014)
- ► Mencinger et al. (2014)

 \rightarrow this analysis similar direction with focus on 2004 accession

4.1 Introduction

Research question adapted:

How did public finance situation affect growth in 2004 accession CEECs?

Did EU membership change this behavior? And if so - how?

- ▶ panel estimation, annual data 1996 2012
- eight 2004 accession countries: Czech Republic, Estonia,
 Hungary, Latvia, Lithuania, Poland, Slovakia and Slovenia
- ightharpoonup public fincance variable ightarrow deficit ratio

4.2 Estimations

impression of growth performance and budget deficit situation:

4.2 Estimations

Regression as in Kumar and Woo (2010) or Mencinger et al. (2014):

$$y_{i,t} - y_{i,t-1} = \phi_0 + \sum_j \phi_j Z_{j,i,t-1} + \epsilon_{i,t}$$
 (4)

y: In of real GDP per capita (LCU)

Z: vector of the additional variables:

DefRatio: initial public deficit to GDP Ratio,

rGDP_{us}: initial conditions: log of real GDP per capita in US\$,

Infl: mon. policy/ inflation, *GovCon*: State size/ public Cons.

FDI: capital inflows/ Foreign direct investment,

33TradeBal: openness/ trade balance,

4.2 Estimations - RESULTS

Result of estimation of equation (4):

```
    summary(FE_def)

    Coefficients:

    Estimate Std.Err t-val Pr(>|t|)

    DefRatio -0.274 0.103 -2.645 0.009 **

    log (rGDP_us) -0.121 0.023 -5.098 1.2e-06 ***

    Inflation -0.338 0.109 -3.086 0.002 **

    GovCons -0.792 0.360 -2.198 0.029 *

    FDI -0.061 0.059 -1.047 0.296

    TradeBal 0.074 0.110 0.679 0.498

    Signif. codes: *** 0.001 ** 0.01 * 0.05 . 0.1

    Adj. R-Squared : 0.24242
```

4.2 Estimations - RESULTS

Result of estimation accounting for 2004 accession:

empirical analysis of relationship between public finance situation and subsequent economic growth

- based on panel estimations with annual data
- ► 3 groups of countries (Euro+US, EM, CEECs)
- distinction between different growth intervals
 (5-years growth, 3-years growth, annual growth)
- results supported by diverse specifications
 (public finance variable, time intervals, regression model, controlls)
- ► controll variables show expected signs

5.1 EMU + US

empirical analysis of relationship between public debt and subsequent economic growth shows for **EMU+US**:

- ► some evidence for **negative** correlation
- results supported by different specifications
 (time intervals, regression model, included variables)
- only weak evidence for non-linearities

5.2 Emerging markets

empirical analysis of relationship between public debt and subsequent economic growth shows for **EM**:

- some evidence for **positive** correlation between public debt and economic growth in EM
- results supported by different specifications
 (time intervals, regression model, included variables)

5.3 CEECs

empirical analysis of relationship between public debt and subsequent economic growth shows for **CEECs**:

- empirical evidence for negative correlation between public deficit and economic growth in new member states
- results with separated response before and after accession:
 only significant negative effect after accession

further research:

- more robustness checks,
- considering heterogeneity,
- extension of panel:

For instance: results suppored by Romania & Bulgaria 2007?

Comments are welcome

Thank you!

Contact:

bboekemeier@wiwi.uni-bielefeld.de